Friday, 13 September 2019

小説 万能鑑定士Qの最終巻 ムンクの<叫び>

松岡圭祐著 講談社 2016年

ピタゴラスの定理

「万能鑑定士Q」シリーズ完結編.沖縄の高校卒業後,東京生活の出発点となったリサイクルショップに戻った万能鑑定士・凜田莉子が,ムンクの絵画「叫び」の盗難事件を追いながら、探偵になった元雑誌記者・小笠原悠斗への愛に気付いていくという話です.
 陸が莉子を見つめてきた。「ならききたい。赤道上にぴんと張ってある紐を一センチ延ばしたら、人がくぐれるようになるか?」
 意地でも間違えられない。莉子はピタゴラスの定理を駆使し、頭のなかで計算した。「一メートル持ちあがるから、くぐれるでしょう。二等辺三角形の底辺は百の二乗マイナス四分の一がふたつ並び、斜辺はいずれも百の二乗プラス四分の一、そして垂直方向に高さ百センチと考えられるので」
「ほう!」陸が目を輝かせた。「やるな。ロジカル·シンキングに計算力も伴ったか。しばらく会わないうちに、頭の回転が速くなった」
 漢那が莉子にきいた。「どういう計算?」
 小笠原がいった。「赤道の長さは関係ないんだよ。百メートルぐらいは、地球の表面も平坦とみなすだけ」
たまたま電車の中で読んでいて,これはどういう計算なのかすぐに分からず,その後ネットで検索しても納得のいかない解答1解答2しか見つからなかったので,じっくりと考えてみたところ,ようやく解明できました.

まず問題の文章が不十分でした.赤道(地球を1周する円周)と同じ長さの紐を1cm延ばすのではありません.水平面上に「百の二乗マイナス四分の一」=$100^2-\frac{1}{4}=9999.75$ (cm) の2倍の長さの紐があってこれを底辺とし,その両端を0.5cmずつ計1cm延ばして中央を持ち上げ,「百の二乗プラス四分の一」=$100^2+\frac{1}{4}=10000.25$ (cm) の斜辺2つが屋根になるような(直角三角形を背中合わせに2個貼り合わせた)2等辺三角形の高さを求めるという計算だったのです.


ピタゴラスの定理で高さを計算すると,$$\sqrt{10000.25^2-9999.75^2}=100$$(cm) となり,確かに凜田莉子の出した解答と一致しました.

小笠原がいった「地球の表面も平坦とみなす」というのは参考になりましたが,「赤道上にぴんと張ってある紐」は「百メートルぐらい」ではなく,実際は$9999.75×2$ (cm) なので,200mぐらいというべきでした.

Saturday, 17 August 2019

ドラマ あなたの番です 第6話

日本テレビ 2019年

複素積分 リー代数

あるマンションに引っ越してきた夫婦が,そこの住民の「交換殺人ゲーム」に巻き込まれるというミステリーです.そこに住む女性の一人が数学科の大学生で,部屋に数式の書かれたホワイトボードがあります.
(そのホワイトボードを目にして)
手塚菜奈 「これは?」
黒島沙和 「専攻が数学科なんですけど,ノートだけじゃ書ききれない計算とかあって…」
手塚菜奈 「へえー」
( ホワイトボードを裏返しながら)
黒島沙和 「今日のメインは,こっちです」
「専攻が数学科なんです」という言い方は少しおかしいですね.さて,ホワイトボードには主に5つの数式がありました.

①複素関数$f(z)=z^m$の積分路とその積分計算です.


まず①-2前半の計算,半円$C_2$に沿った積分を,$z=e^{(\pi-t)i}$とおき,途中$\pi-t=s$と置換していますが,置換した後の積分区間を$\pi$から0に変えるべきところを,0から$\pi$のままになっていて,m : even(mが偶数)のときの値が正しくは$-\frac{2}{m+1}$なのに$\frac{2}{m+1}$になっています.$z=e^{ti}$とおけば,あとでもう一度置換する必要はなく,間違いはなかったと思います.そうすればこの計算は次のようになります.
\begin{eqnarray}
\int_{C_2} z^m dz&=& \int_0^{\pi} e^{mti} ie^{ti} dt \\
&=& i\int_0^{\pi} e^{(m+1)ti}dt \\
&=& i\int_0^{\pi} \{ \cos{(m+1)t}+i\sin{(m+1)t} \}dt \\
&=& i \left[\frac {\sin{(m+1)t}}{m+1}-i\frac {\cos{(m+1)t}}{m+1}\right]_0^{\pi} \\
&=& \frac{1}{m+1}\{ \cos{(m+1)\pi}-1\} \\
&=&  \begin{cases}
    \ \ \ \ \ 0 & ( m : odd ) \\
    -\frac{2}{m+1} & ( m : even) \\
  \end{cases}
\end{eqnarray}
次に①-2後半の計算,折れ線$C_3$に沿った積分は,最後の部分がはっきり映らなかったので,確認のため,書き加えておきます.
\begin{eqnarray}
\int_{C_3} z^m dz&=& \int_{-1}^0 \{t-(t+1)i\}^m (1-i) dt + \int_0^1\{t+(t-1)i\}^m (1+i) dt \\
&=& \int_{-1}^0 (1-i)\{(1-i)t-i\}^m dt + \int_0^1 (1+i)\{(1+i)t-i\}^m dt \\
&=& \left[\frac { \{(1-i)t-i \}^{m+1} }{m+1}\right]_{-1}^0+\left[\frac { \{(1+i)t-i \}^{m+1} }{m+1}\right]_0^1 \\
&=& \frac{(-i)^{m+1}-(-1)^{m+1}+1^{m+1}-(-i)^{m+1}}{m+1} \\
&=&  \begin{cases}
    \ \ \ 0 & ( m : odd ) \\
    \frac{2}{m+1} & ( m : even) \\
  \end{cases}
\end{eqnarray}
以上の計算は,①-1積分路の図のすぐ下の式,$$\int_{C_2} z^m dz = \int_{-1}^1 t^m dt =  \begin{cases}
    \ \ \ 0 & ( m : odd ) \\
    \frac{2}{m+1} & ( m : even) \\
  \end{cases}$$を確認するためだったのでしょうが,正しくは
$$\int_{C_2} z^m dz = -\int_{-1}^1 z^m \frac{dz}{dt} dt =  \begin{cases}
    \ \ \ \ 0 & ( m : odd ) \\
    -\frac{2}{m+1} & ( m : even) \\
  \end{cases}$$
と書くべきでしょう.ただ,コーシーの積分定理より,特異点のない周回積分の値は0になるので,$$ \int_{C_2} z^m dz + \int_{C_3} z^m dz =0$$と書いた方がすっきりしますね.

②$x$と$y$を含む整式の除法ですが,何のための計算かよく分かりませんでした.分かる方は教えてください.


③複素関数$f(z)=\frac{1}{z^4-1}$を,留数定理を使って,特異点$z=i$を中心とする半径1の円に沿って積分する計算です.


④複素関数$f(z)=\frac{1}{z^2-4}$を,$z=i$の周りでローラン展開しています.


下から2行目,$( \frac{i}{3} ) )$の後にn乗がありますが,正しくは$( \frac{i}{3} )$の後ですね.

⑤リー代数  su(2) の基底 $e_1$, $e_2$, $e_3$が,括弧積$[A,B]=AB-BA$で,
$[e_1, e_2]=e_3$,   $[e_2, e_3]=e_1$,   $[e_3, e_1]=e_2$
を満たすことを確かめています.3次元ベクトル空間の基底 $e_1=(1,0,0)$, $e_2=(0,1,0)$, $e_3=(0,0,1)$が,外積で,
$e_1×e_2=e_3$,   $e_2×e_3=e_1$,   $e_3×e_1=e_2$
を満たすことと同様です.


[参考]

パウリ行列

SU(2)とSO(3)の関係

Sunday, 14 July 2019

小説 神様のパラドックス

機本伸司 著 2008年 ハルキ文庫

フラクタル コッホ曲線 必要条件・十分条件 不完全性定理

ごく普通の女子大生である井沢直美が,飛行機に搭載された量子コンピューターを駆使して占いやカウンセリングをしようとする会社でのアルバイトで,それまでの日常から想像もできなかったような稀有な体験をするという話です.
「フラクタル?」 智恵実が聞いた。
「規則性の単純な "自己相似" 図形ですね。つまり図形を構成する小さな部分が、 図形全体と同じょうな構造をもつ幾何学図形。自然のなかでも、海岸線、 雲、 銀河、 星団などが、よく似た性質をもつと考えられています。そのフラクタルのなかで、我々が採用したのは "コッホ曲線" といわれるもので、正三角形をべースにしています」
「清算関係?」
「正三角形」小佐薙がもう一度言った。「各辺を三等分し、その中央を一辺とする小さな 正三角形を、外側にそれぞれ描く。それを際限なく描き続ける。すると,有限の大きさであるにもかかゎらず、周囲の長さは、理論上無限大の図形ができるわけです」
有限の大きさの中に、無限の長さ ......。直美は、頭の中でくり返した。
フラクタル図形とは自己相似な図形,すなわち部分と全体とが相似な図形のことで,ここで登場したコッホ曲線の他に,シェルピンスキーのギャスケット,カントール集合などが有名です.

1次元図形である線分、2次元図形である正方形、3次元図形である立方体の各辺を2等分したとき、1次元では2個の線分、2次元では4個の正方形、3次元では8個の立方体ができます.つまり、一辺を$n$等分すると、$n$個の線分、$n^2$個の正方形、$n^3$個の立方体ができますが,この指数が普通に2次元,3次元などという次元の数を表しています.

フラクタル次元は,一辺を$n$等分して$m$個の相似な図形ができるとき,$$\frac{\log{m}}{\log{n}}$$で定義されます.この定義は普通の次元にも当てはまり,例えば立方体の各辺を2等分したとき,8個の立方体ができるので,$$\frac{\log{8}}{\log{2}}=3$$となり,次元の数は3ということになります.

一方,フラクタル図形は次元が非整数になるのが特徴です.

コッホ曲線
コッホ曲線
一辺を3等分して真ん中の線分を除き、そこへ除いた線分と正三角形ができるように同じ長さの2辺を追加すると,元の線分の1/3の長さを持つ線分が4つつながった折れ線ができます.この操作のたびに,3等分した後4つの相似な図形ができるので,$$\frac{\log4}{\log3}≒1.262$$となり,コッホ曲線のフラクタル次元は1.262ということになります.また,この操作を繰り返していくと,曲線の長さは公比$\frac{4}{3}$の等比数列になるので,無限に長くなっていきます.

シェルピンスキーのギャスケット
シェルピンスキーのギャスケット
正三角形の真ん中から辺の長さが1/2になる上下逆向きの正三角形を取り除くと,元の三角形の1/4の面積を持つ正三角形が3つできます.この操作のたびに,2等分した後3つの相似な図形ができるので,$$\frac{\log3}{\log2}≒1.585$$となり,コッホ曲線のフラクタル次元は1.585ということになります.また,この操作を繰り返していくと,残る三角形の面積の和は公比$\frac{3}{4}$の等比数列になるので,限りなく0に近づいていきます.

カントール集合
カントール集合
線分を3等分して真ん中の線分を取り除くと,元の1/3の長さを持つ線分が2つできます.この操作のたびに,3等分した後2つの相似な図形ができるので,$$\frac{\log2}{\log3}≒0.631$$となり,カントール集合のフラクタル次元は0.631ということになります.また,この操作を繰り返していくと,残る線分の長さの和は公比$\frac{2}{3}$の等比数列になるので,限りなく0に近づいていきます.

この小説は神様論が冗長で,読むのに少し疲れるところもありましたが,面白い言葉のパロディが多くて楽しめました.

Saturday, 29 June 2019

TVスポーツ 日本陸上競技選手権

NHK 日本陸上競技選手権 TV放送より
2019年度日本陸上競技選手権が6月27-30日に福岡で行われ,そのTV中継の中で男子100m決勝の後に右のグラフが表示されました.1位のサニブラウン選手(記録10.02秒)と,2位の桐生選手(記録10.16秒)のスタート後の距離とそのときの速度を表していて,赤色が1位,黄色が2位の走りを表しています.

近似関数(by GeoGebra)
<1位のグラフ(赤色)の特徴>
 頂点は(65, 42.7)
 ほぼ左右対称
 2次関数よりは3次関数のカーブに近い

100mは距離が短いので,トップスピードになったらそのままゴールまで行くのかと思っていましたが,そうではなく,ピーク前に速度が上がったのと同じぐらいの割合でピーク後の速度が下がっていることは意外でした.

このグラフをGeoGebraを使って関数で表してみました.すると3次関数よりも3.1次関数の方がこのグラフに近いことが分かりました.距離を$x$,速度を$y$としたときの方程式は次のようになります.

10≤$x$≤65のとき,$y=-0.00005(-x+65)^{3.1}+42.7$
65≤$x$≤100のとき,$y=-0.00005(x-65)^{3.1}+42.7$

JAAF
日本陸上競技連盟(JAAF)公式サイトには桐生選手が当時の日本記録9.98を出した時のグラフがあります.これもほぼ65m地点を中心に左右対称になっています.やはり100mを10秒ぐらいで走るにはものすごいスピードが必要ですが,ピークの65m地点を過ぎてそのままトップスピードを維持することは非常に難しいことのようです.


Saturday, 25 May 2019

小説 万能鑑定士Qの事件簿 1

松岡圭祐著 角川文庫 2010年

エビングハウスの忘却曲線

沖縄の離島出身、成績は良くなかったが天真爛漫に育った凜田莉子(りんだりこ)が高校卒業後に上京し,あるディスカウントショップ社長から勉強法を伝授されて博学を身につけ,「万能鑑定士Q」という店をオープン.そこに持ち込まれる品物の鑑定をきっかけに,様々な事件の解決に向けて活躍します.
「教科書を読むときには,書かれている内容に感動すべきなんだ」
「でも,教科書を読んで楽しいところばかりじゃないし……,覚えようとしなきゃ覚えられないと思いますけど」
「それでも,記憶に感動を伴わせるのを忘れないように.そして四割ほど忘れたころに,もういちど同じところを学習すること」
「四割?」
「エビングハウスの忘却曲線とか,記憶に関する本を読みかじったうえで実践してみて,私の納得のいったやり方だ」
あることをある時間をかけて覚えたとして,その後一定時間経って忘れた部分だけを覚え直すためにかかる時間は最初より短時間になります.(最初に覚えるのにかかった時間)ー(覚え直すのにかかった時間)を(最初に覚えるのにかかった時間)で割った値を「節約率(savings)」といいます.この節約率は時間が経つほど減っていくので,ほぼ記憶保持率(retention rate)と同様に考えていいようです(英語版 Wikipedia "Forgetting Curve")

例えば、あることを最初に100%覚えるまでに10分かかり、20分経ってから忘れた部分を覚え直すのに4分かかったとすると,再度100%まで覚え直す時間を 10-4=6分 節約したことになるので,最初に100%覚えてから20分後の節約率(≒記憶保持率)は,6÷10=0.6=60%ということになります.

実データと近似曲線(対数目盛)
この節約率(≒記憶保持率)$s$(%)を,最初に覚えてから経過した時間 $t$(分)の関数としてグラフに表したものを忘却曲線といいます.エビングハウスは実データを元に,つぎの近似関数を得ています.$$s=100\times\frac{1.84}{\left(\log_{10}{t}\right)^{1.25}+1.84}$$このグラフをExcelで作ってみました(右上図).これを見ると,覚えた直後は急激に忘れ,その後だんだん緩やかに忘れていくことが分かります.このグラフの $t$ 軸は対数目盛(1, 10, 100, 1000, …が等幅の目盛)にしています.

実データと近似曲線(線形目盛)
Geogebraで普通の目盛(線形目盛)のグラフを描くとこうなります(右下図).最初だけ急減し,その後はずっと横に伸びてほんの少しずつ減少していきます.

この結果から,覚えた後すぐに約半分を忘れてしまうものの,約2割は長期間忘れないということが分かります.

余談ですが,日本語版Wikipedia「忘却曲線」の方には近似関数の方程式がなかったので追加しておきました.

[Reference]
Wikipedia "Forgetting Curve"
https://en.wikipedia.org/wiki/Forgetting_curve

Saturday, 27 April 2019

小説 秘密

東野圭吾著 2001年 文春文庫

置換積分

妻と娘がバス転落事故に遭い,妻が娘をかばって亡くなった.娘は助かったものの,心が妻のものに入れ替わっていたという衝撃的な状況の中で,夫がとまどいながらも妻のようにふるまう娘と一緒に暮らしていくという話です.
「えー,積分の証明問題かあ」
「ははあ,なるほど.これは結構難しいな.ええと,これはまずxの二乗イコールtと置いて,tをxについて微分してやるんだ」
$x^2=t$と置換して解く積分の問題で簡単なものをひとつ見てみましょう.$$\int2xe^{x^2}dx$$$x^2=t$の両辺を$x$について微分すれば,$2x=\frac{dt}{dx}$,$2xdx=dt$なので与式は,$$\int e^tdt=e^{x^2}+C$$となります.しかし,娘は医学部を目指す受験生ということなので,解き方を尋ねているとすれば,この問題は易しすぎますね.

少し難しいものならこんな問題があります.$$\int\sqrt{1+x^2}dx$$ただ,これを$x^2=t$と置換すると,解けなくはないのですが大変複雑な計算になってしまいます.また$x=\tan\theta$と置換しても解けますが,やはりかなり複雑な計算になります.少し難しい数学Ⅲの参考書には,知らないと絶対に思いつかないような置換 $x+\sqrt{1+x^2}=t$(実は$\exp(\sinh^{-1}x)$)が紹介されていますが,これでもやはり複雑な計算になってしまいます.

加法定理や微分公式などが三角関数(円関数)に似た性質を持つ双曲線関数を知っていれば,$x=\sinh t$ すなわち $x=\frac{e^t-e^{-t}}{2}$ と置換することで,もっと簡単に計算できます.$dx=\cosh t \ dt$なので,\begin{align}
\int\sqrt{1+x^2}dx&=\int\cosh^2t \ dt\\
&=\int\frac{1+\cosh 2t}{2}dt\\
&=\frac{1}{2}t+\frac{1}{4}\sinh 2t+C\\
&=\frac{1}{2}\sinh^{-1} x+\frac{1}{2}\sinh t\cosh t+C\\
&=\frac{1}{2}\ln \left(x+\sqrt{1+x^2}\right)+\frac{1}{2}x\sqrt{1+x^2}+C\\
\end{align}
この物語は娘の心が妻の心に置き換わったという話なので,著者はその中に登場させた数学の問題を「置換積分」にしたのでしょう(笑).

追記 2019/5/2

Click to enlarge
映画の方には,娘の通う高校での数学の授業の場面がありました.極限に関する2つの条件を満たす2次関数を求める問題です.数学Ⅱを既習の人は解いてみてください.

正解は $f(x)=2x^2-7x+5$

Tuesday, 16 April 2019

小説 珈琲店タレーランの事件簿 5

岡崎琢磨著 2016年 宝島社

組み合わせ

理想の珈琲を追い求める青年アオヤマが,偶然入った京都の珈琲店「タレーラン」で,長年追い求めていた理想の珈琲と出会う.その珈琲をいれる魅惑的な女性バリスタ,切間美星が,次々と店に持ち込まれる謎を鮮やかに解き明かしていくという話です.
「これは ...... 源氏香? 」
「組香といって、 江戸時代に成立した競技だね。まず、五種類の香木をそれぞれ紙で包んだものを、五包ずつ計二十五包、用意する。その中から無作為に選んだ五つの包みを順番に焚いて、においを嗅いでいく。そして一番目から五番目の包みのうち、どれとどれのにおいが同じか、もしくは違うかを判定する。すべて違う、一番目と二番目だけが同じ、一番目と二番目と三番目が同じで四番目と五番目が同じ、すべて同じ、……、組み合わせは全部で五二通りあって、 これに源氏物語全五十四帖のうち第一話の『桐壺』と第五十四帖の『夢浮橋』を除いた五十二の巻名がつけられているんだよ」
Wikimedia Commons
この組み合わせが52通りであることを確認してみましょう.右図はすべての組み合わせを表しています.縦線が回を表し,横線でつながっている回が同じにおいという意味です.上の説明では,「すべて違う、 一番目と二番目だけが同じ、一番目と二番目と三番目が同じで四番目と五番目が同じ、すべて同じ、……、」と4種類のパターンが述べられていますが,実際は7種類のパターンがあります.

①すべて違う Pattern(1,1,1,1,1)(右図最上図)
 5つのにおいから5つ選ぶので,5C5=1通り
②2つ(1ペア)が同じであとの3つが違う Pattern(2,1,1,1)(右図紫色を含む図)
 5回のうち同じにおいになる2回を選ぶので,5C2=10通り
③3つが同じであとの2つが違う Pattern(3,1,1)(右図緑色を含む図)
 5回のうち同じにおいになる3回を選ぶので,5C3=10通り
④2つと2つ(2ペア)が同じであとの1つが違う Pattern(2,2,1)(右図橙色茶色を含む図)
 これは同じものを含む順列$\frac{5!}{2!2!1!}$=30かなと考えてしまいそうですが,例えばaabbcとbbaacはどちらも「あるにおいが2回続き,次に前の2回と異なるにおいが2回続き,最後に前の4回と異なるにおいになる」という意味では,aとbを入れ替えたものも同じと考えられるので,30/2=15通りになります.
⑤4つが同じであとの1つが違う Pattern(4,1)(右図赤色を含む図)
 5回のうち同じにおいになる4回を選ぶので,5C4=5通り
⑥3つが同じであとの2つが同じ Pattern(3,2)(右図緑色紫色を含む図)
 5回のうち同じにおいになる3回(または2回)を選ぶので,5C3=5C2=10通り
⑦5つが同じ Pattern(5)(右図最下図)
 5回のうち同じにおいになる5回を選ぶので,5C5=1通り
以上①~⑦を合計すると52通りになります.

因みにこの数は,n個のものを分割する方法の総数,ベル数(Bell number) Bn の5番目の数B5にあたります.つまり,この源氏香の組み合わせは,5個のものを分割する方法の総数と等しいということになります.

[Reference]

コトバンク 源氏香
https://kotobank.jp/word/%E6%BA%90%E6%B0%8F%E9%A6%99-492071

Wikimedia Commons Genji chapter symbols groupings of 5 elements
https://commons.wikimedia.org/wiki/File:Genji_chapter_symbols_groupings_of_5_elements.svg

Sunday, 10 March 2019

小説 千里眼の教室

松岡圭祐著 角川文庫 2009年

整数問題 ベルヌーイの法則

新「千里眼」シリーズ第5弾.航空自衛官をやめて臨床心理士になった,抜群の知識と身体能力を持つヒロイン岬美由紀が,次々と大きな問題を解決していきます.
「得意教科はなんだ」
「数学とか…」
「ほう,数学か.末尾の4を頭に移動すると元の4倍になる整数は?」
「ええと, 102564」
「よろしい、まずまず使えそうだ。おまえをの統治官補佐に任命する。舞台にあがれ。」
この問題,こんなに容易に解けるのでしょうか.まず掛け算をして解いてみました.(click to enlarge)
このような手間のかかる計算になるので,とても即答するのは難しいですよね.

次に代数的に解いてみました.この整数を(n+1)桁と仮定し,1の位を4,10の位より上を$x$($x$はn桁)とすると,元の数は$10x+4$と表されます.末尾の4を頭に移動したものは$4×10^n+x$となるので,
\begin{align}
4(10x+4)&=4×10^n+x \\
40x+16&=4×10^n+x \\
39x&=4×10^n-16 \\
x&=\frac{4(10^n-4)}{39} \\
\end{align}n=1, 2, 3…と計算していくと,$x$が整数になる最小のnは5になります.$$x=\frac{4(10^5-4)}{39}=10256$$よって,求める最小の整数は$$10x+4=102564$$どちらにしても即答するのは困難でしょう.

この数の他に,102564102564,102564102564102564,…も条件を満たすので,最小のものが102564になります.従って,上の台詞は「末尾の4を頭に移動すると元の4倍になる最小の整数は?」にするほうがいいと思います.

ついでに「末尾のkを頭に移動すると元のk倍になる整数」を,k=4以外にいくつか計算してみました.
k=2 :  105263157894736842
k=3 :  1034482758620689655172413793
k=5 :  102040816326530612244897959183673469387755
k=6 :  1016949152542372881355932203389830508474576271186440677966

このように,小説に登場したk=4のとき以外は,非常に大きな数になってしまいました.因みに次のk=7のときは,少し短くなって,1014492753623188405797になります.ご自分で確認してみてください.


Saturday, 2 March 2019

小説 千里眼 The Start

松岡圭祐著 角川文庫 2007年

効果量 平均値 標準偏差 平均の速度

航空自衛官をやめて臨床心理士になる過程で,顔の表情から相手の考えが分かるという特技を身につけた岬美由紀が,その卓越した知識と身体能力で,さまざまな問題を解決していくという話です.

効果量
専務理事は美由紀にたずねてきた。「スミスとグラスのメタ分析で、任意の治療効果尺度について効果量を算出するとき、その計算方法は?」
美由紀は彼らと向かいあわせに椅子に腰かけていた。幹部自衛官という職業を経ている以上、こういう場で緊張を感じることはない。
思いつくままに美由紀は応じた。「治療群の平均値から、未治療統制群の平均値を引き、未治療統制群の標準偏差で割ったものです」
統計学における効果量 (effect size) にはd族とr族の2種類があり,この小説に登場した効果量はd族に属しています.d族の効果量は,2つのデータの平均値の差を標準偏差で割ったもの,すなわち,平均値の差を標準偏差が1のものになるように換算(標準化)したものです.例えば,あるクラスで,1回目の数学のテストの平均点$\overline{x_1}$が50点で,標準偏差$s_1$が15点だった.成績を上げるため全員に補習をしたところ,2回目の同じようなテストの平均$\overline{x_2}$は60点で,標準偏差$s_2$はやはり15点だったとします.この補習の効果の大きさを数値で表してみましょう.

d族の効果量は次式で計算します.$$\frac{\overline{x_2} - \overline{x_1}}{s}$$データの量も標準偏差も変わらない場合は,$s=s_1$として,$$Δ = \frac{60 - 50}{15}\fallingdotseq0.67$$となります (Glass' Δ).一般に0.5より大きければ効果ありといえます.r族の効果量のひとつである相関係数は1を超えることはありませんが,d族の効果量は1を超えることもあります.

この例の場合の1回目のデータを統制群 (control group) といい,補習という「実験」をした後の2回目のデータを実験群 (experimental group) といいます.従って,上の台詞の中の「治療群」が実験群にあたります.

スミスとグラスは,過去の複数の研究成果を分析(メタ分析)し,この式で効果量を算出して心理療法に効果があること(効果量0.68)を示しました.

データの量は変わらないが標準偏差が異なる場合は,$s= \sqrt{\frac{s_1^2 +s_2^2}{2}}$ (Cohen's d),データの量も標準偏差も異なる場合は,$s= \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}}$ (Hedges' g) として計算する方法もあります.

平均の速度
「同じ道を行き帰りするとして、行きが速度六十キロ、帰りが速度二十キロ。平均の速度は?」
「ええっと、あの………四十キロ」
「三十キロでしょ。よく間違える問題なの。あなたこそ気をつけて」美由紀は笑ってドアを開けた。
とっさにこう聞かれると,60km/hと20km/hを加えて2で割り,40km/hと答えたくなりますね.行きと帰りにかかる時間がどちらも同じだと思ってしまうとこのような間違いをします.例えば60kmの道のりを往復するとすれば,行きに1時間,帰りに3時間,合計4時間かかるので,平均の速度は,120km÷4h=30km/hとなります.

[参考]
効果量 - Researchmap
https://researchmap.jp/?action=multidatabase_action_main_filedownload&download_flag=1&upload_id=49827&metadata_id=25538

Tuesday, 22 January 2019

小説 京都寺町三条のホームズ 5

望月麻衣著 双葉文庫 2016年

カラーコード シーザー暗号 エニグマ

祖父がオーナーの骨董品店「蔵」を手伝う大学院生家頭清貴(通称ホームズ)と,アルバイトの高校生真城葵が,京都のさまざまな名所を舞台に活躍するライトミステリーです.
『灰桜色』のカラーコードは『#e8d3d1』.
『e8d3d1』をまずシーザー暗号化したら『h11g6g4』.
これを数字に変えたら『8117674』.
これをまた,アルファベットに変えたら,『haagfgd』.
『haagfgd』を『エニグマ』化したら,『rtwqokw』.
これを数字化すると,『182023151123』.
「これで,12桁や.……できた」
色のカラーコードは16進数です.16進数は0~9とA~Fの15個の数を使って表します.e8d3d1を10進数で表すと,
14×16^5+8×16^4+13×16^3+3×16^2+13×16+1=15258577
となり,『灰桜色』は1525万8577番目の色ということになります.因みに0に当たる#000000は黒,16進数6桁最後の#FFFFFF=1677万7215番目は白となっています.

シーザー暗号は,アルファベットをすべていくつかずつずらすという初歩的な暗号です.この場合 e→h は,e→f→g→hで3つずれるので,他の文字や数字も3つ後のものになります.すなわち,8→11, d→g, 3→6, d→g, 1→4となるので,『e8d3d1』が『h11g6g4』になります.

作品中で『h11g6g4』をわざわざ数字化してからアルファベット化していますが,なぜすぐにアルファベット化しなかったのでしょう.しかも8を11にしたのですから,11はaaではなく,11番目のアルファベットであるkではないでしょうか.ここはもとの6文字をキープして『haagfgd』ではなく『hkgfgd』とすべきでしょう.

Click to enlarge.
『エニグマ』は第2次世界大戦でドイツが開発した暗号で,解読困難といわれたのですが,イギリスの数学者Alan Turingが解読し,その功績で後に連合軍が優勢になったことが有名で,映画にもなっています.この暗号化は難しいので変換サイトで確認しました.右図のように『haagfgd』を『エニグマ』化したものは,確かに作品中の『rtwqokw』と一致しています.

ところが,
『rtwqokw』を数字化すると『182023151123』
と書かれていたのですが,よく見ると4つ目のqが抜けています.qは17番目のアルファベットなので,正しくは『18202317151123』となるはずですが,それでは14桁になってしまいます.

上で「すべき」と主張した6文字の『hkgfgd』を『エニグマ』化したら『rtwqok』となり,これを数字化すると12桁の『182023171511』になりました.

従って,作品中の文章は以下のように訂正した方がいいと思います(読んだのは第1刷だったので,その後訂正されているかも知れません).
『灰桜色』のカラーコードは『#e8d3d1』
『e8d3d1』をまずシーザー暗号化したら『h11g6g4』
これをアルファベットに変えたら『hkgfgd』
『hkgfgd』を『エニグマ』化したら『rtwqok』
これを数字化すると『182023171511』
「これで12桁や.……できた」 
ただ,これでもやはり11をaaにするのかkにするのか紛らわしいので,先にアルファベット化すればすっきりします.
『灰桜色』のカラーコードは『#e8d3d1』
『e8d3d1』をまずアルファベットに変えたら『ehdcda』
これをシーザー暗号化したら『hkgfgd』
『hkgfgd』を『エニグマ』化したら『rtwqok』
これを数字化すると『182023171511』
「これで12桁や.……できた」 
それにしても,誰かがこんな数字の決め方をしたとして,これを他の人が当てるなんて実際ありえないですよね.まあ,小説やからええか(笑).

[Reference]
色検索
https://www.colordic.org/search/
Enigma Simulation
http://enigmaco.de/enigma/enigma.html

Wednesday, 16 January 2019

小説 国語、数学、理科、誘拐

青柳碧人著 文春文庫 2016

円周角 ニュートン算 不等式の表す領域

ある塾の生徒が誘拐され,その塾の講師たちが救出のために奮闘する話です.
「8本足のタコ星人3人が10日でする仕事の量はトータルで240,10本足のイカ星人2人が18日でする仕事の量はトータルで360でしょ?」
「その差120は8日間でヒトデ型イチゴが生長する量になるよね.つまり,ヒトデ型イチゴが1日に生長する量は120÷8で15だ」
「タコ星人とイカ星人1人ずつで1日にできる仕事の量は18だけど,その1日の間にヒトデ型イチゴは15成長しちゃうから,結局減るのは3しかないでしょ? そいで,初めから農場にあるヒトデ型イチゴの量なんだけど」
問題文がなく,解き方を相談している場面だけで,しかもここでこの話題が終わってしまいました.「ぉ」と「お」や,「生長」と「成長」など一貫性がないのはさておき,このニュートン算の問題を推測して解いてみました.

[推測される問題]
宇宙のどこかの星に,一定の割合で成長していくヒトデ型イチゴの農場がある.これらを摘み取るための1日の仕事の量は,タコ星人1人なら8,イカ星人1人なら10である.初めから農場にあるヒトデ型イチゴをすべて摘み取るには,タコ星人3人なら10日かかり,イカ星人2人なら18日かかる.
1) 初めから農場にあるヒトデ型イチゴの量はいくらか.
2) タコ星人1人とイカ星人1人が一緒なら,この量をすべて摘み取るのに何日かかるか.

[小学生の解答] (右図参照)
タコ星人3人での10日間の仕事の量は8×3×10=240,イカ星人2人での18日間の仕事の量は10×2×18=360.仕事の量の差は360-240=120で,日数の差は18-10=8.つまり,ヒトデ型イチゴが1日に成長する量は120÷8=15.
1) タコ星人3人の1日の仕事の量は8×3=24.このとき1日に減る量は24-15=9なので,初めから農場にあるヒトデ型イチゴの量は 9×10=90(または,イカ星人2人の1日の仕事の量は10×2=20.このとき1日に減る量は20-15=5なので,初めから農場にあるヒトデ型イチゴの量は 5×18=90).
2) タコ星人1人とイカ星人1人が一緒にする1日の仕事量は8+10=18.このとき1日に減る量は18-15=3.かかる日数は90÷3=30.

[代数で解くと]
1) 初めから農場にあるヒトデ型イチゴの量をx,ヒトデ型イチゴが1日に成長する量をyとすると,タコ星人3人での10日間の仕事の量は x+10y=24×10…①,イカ星人2人での18日間の仕事の量は x+18y=20×18…②.連立方程式①②を解いて x=90,y=15.
2) タコ星人1人とイカ星人1人が一緒にする1日の仕事の量は 8+10=18.かかる日数をzとすると,z日間の仕事の量は 900+15z=18z.これを解いて z=30.

Saturday, 22 December 2018での投稿でも述べましたが,世界中の最も多くの国や地域で採用されている「国際バカロレア(IB)」など,海外のカリキュラムでは,このような〇〇算というような,日本の中学入試のためにあるようなやたら難しい文章題はあまり見られず,代数を使って方程式で解く方法へスムーズに進んでいるように思います.

Wednesday, 26 December 2018

小説 青の数学

王城夕紀(おうじょうゆうき)著 新潮文庫nex 2016年

モジュラー算術 素数 ガロワ カントール ピタゴラス オイラーの等式 ラグランジュの四平方の定理 ゴールドバッハ予想 エルデシュ リーマン予想 黄金比 

高校1年生の栢山(かやま)が,「数学とは何か」を考えながら,数学研究会の活動や,他校生との数学の闘いなどを通じて成長していくという話です.数式,数学用語,数学者名が多数登場します.

冒頭に登場した問題に解答がなかったので解いてみました.

(問題)
$n$と$x$が整数のとき,$2^n+7=x^2$の解をすべて求めよ.

(解答)
$n$<0のとき,$2^n$は整数ではないので $n$≧0で考える.
$n$=0のとき,与式は$8=x^2$になるので整数解$x$はない.
$n$=1のとき,与式は$9=x^2$になるので$x=±3$.
$n$≧2のとき,$2^n$は4の倍数なので $2^n+7$は4で割った余りは3($2^n+7 \equiv 3 \mod 4$ と表します)だが,$x$が $4k$,$4k+1$,$4k+2$,$4k+3$($k$は整数)のどれであっても,$x^2$は4で割った余りが3にならない($x^2 \not\equiv 3 \mod 4$ と表します)ので,$2^n+7=x^2$を満たす整数解$x$はない.
以上より求めるすべての解は,$(n, x)=(1, 3), (1, -3)$

この左辺の符号を「ー」に変えただけの $2^n-7=x^2$ を満たす整数解を求める問題はラマヌジャンの問題464といい,急に難しくなります.こちらに詳しい解説があります.

苦言をいくつか….話の中で,特定の商標名を出さずにタブレットと呼んでいたのはいいのですが,逆に炭酸飲料は商標名の「〇〇〇サイダー」ばかりが登場したので違和感がありました.

また,登場人物の名前の読みが難しくて,何回も初出のページに戻って確認を余儀なくされました.主人公の栢山もそうですが,特に京(かなどめ)はなかなか覚えられませんでした.いろはかるたの最後が「京」なので,かなのとめだからこう読むようになったらしいです.他に皇(すめらぎ)も読みにくい.私の記憶力も問題ですが,これでは話の流れが中断されてしまうので,登場人物の名前は簡単な読みの方がありがたいです.

さらにもうひとつ.登場人物の名前が姓だけの者(栢山)と,姓名両方の者(京香凛)と,姓か名か分かりにくい者(七加,五十鈴)とが混在していたので,最初は全員フルネームで登場させてほしいと思いました.王城さん,「オウジョウしまっせ!」(笑).

<Reference>
ラマヌジャンが出した問題
http://integers.hatenablog.com/entry/Ramanujan-Nagell
レファレンス事例詳細 なぜ「いろは」の最後が「京」なのか?
http://crd.ndl.go.jp/reference/modules/d3ndlcrdentry/index.php?page=ref_view&id=1000137588
  

Saturday, 22 December 2018

ドラマ 家庭教師が解く! 第2作

TBS 2014年

面積図

家庭教師の香坂夏美が,教え子の家庭の事件に巻き込まれながらも,元刑事の佐伯雫と協力して解決していくという話です.鶴亀算や旅人算などを長方形を描いて解く方法「面積図」が登場しました.
香坂夏美 「2つの事件は,同一犯人による連続殺人事件….解いてみるっちゃ! 知世コーチは10:30に殺された鈴木恭介と,隅の川の近くで会っていた.次は犯行動機.多田一平は三沢院長と知世コーチの男女関係についても調べていた.そのことを鈴木恭介も知っていた.」
柿沼警部 「何これ?」
香坂 「面積図です.」
柿沼 「はあ?」
篠崎管理官 「代数を使わず連立方程式を解くっていうやり方ね.」
柿沼 「何?」
香坂 「だからあ,この長方形とこの長方形の面積の合計が,こっちの長方形とこっちの長方形の面積の合計っていう発想の転換よ.」
佐伯 雫 「つまり?」
篠崎 「田所氏と鈴木殺しは愛梨ちゃんが動機の殺しと別の動機の殺しに分けることができる!」
面積図は「動物の数×1匹の足の数=足の総数」とか,「速さ×時間=距離」というような例では使えますが,上のように数値でない「犯人×動機=殺人」というような例で使われるのには違和感がありますね.

鶴亀算を実際に解いてみましょう.鶴と亀の合計が20で,足の総数が56とします.

<小学生の解き方>
全部が亀だとすると足の総数は4×20=80.これは24多いから,鶴の数は24÷2=12,亀の数は20-12=8となります.面積図を使うと,右図左上の欠けている長方形の面積が鶴の足の数を表します.

逆に全部が鶴だとすると足の総数は2×20=40.これは16少ないから,亀の数は16÷2=8,鶴の数は20-8=12となります.面積図を使うと,右図右上の長方形の面積が,亀の足の数の1/2を表します.

鶴亀算で例えるなら,「全部が亀だとする」を「全部が鶴だとする」に変えることを,劇中では「発想の転換よ」といっています.

<中学生の解き方>
鶴の数をx,亀の数をyとすると,連立方程式 x+y=20,2x+4y=56 を解いて,x=12, y=8

劇中で面積図のことを「代数を使わず連立方程式を解くっていうやり方ね」と言っていましたが,代数を知らないからこそ面積図が便利なのであって,連立方程式をすでに学んだ段階では,代数を使わずにわざわざ面積図を使うことはないでしょう.

世界中の最も多くの国や地域で採用されている「国際バカロレア(IB)」など,海外のカリキュラムでは,このような〇〇算というような,日本の中学入試のためにあるようなやたら難しい文章題はあまり見られず,代数を使って方程式で解く方法へスムーズに進んでいるように思います.

Saturday, 24 November 2018

映画 センセイ君主

幸田もも子原作 2018年 東宝

二項定理 二項係数

高校1年生の佐丸あゆはが,担任の急な入院のため代理でやってきたイケメン数学教師弘光由貴に恋をするという話です.

授業の板書には$(a+b)^3$と$(a+b)^4$の展開式があり,その後$(a+b)^n$の展開式,すなわち二項定理を導いています.

いくつか書いてみましょう.
$(a+b)^2= a^2+2ab+b^2$
$(a+b)^3= a^3+3a^2b+3ab^2+b^3$
$(a+b)^4= a^4+4a^3b+6a^2b^2+4ab^3+b^4$
係数を並べると,パスカルの三角形になります.

日本の高校数学では,二項定理は次のように表されていますが,
$(a+b)^n={}_nC_0a^n+_nC_1a^{n-1}b+_nC_2a^{n-2}b^2 {}+_nC_3a^{n-3}b^3+...+_nC_nb^n$

インターナショナルスクールで多く採用され,日本の一条校でも少しずつ普及しつつあるカリキュラム「国際バカロレア(IB)」や海外の数学教科書では次の表記の方がよく使われています.日本でも専門書ではだいたいこちらの記号が使われています.
$(a+b)^n=\begin{pmatrix} n \\ 0 \end{pmatrix} a^n+\begin{pmatrix} n \\ 1 \end{pmatrix} a^{n-1}b+\begin{pmatrix} n \\ 2 \end{pmatrix} a^{n-2}b^2 {}+\begin{pmatrix} n \\ 3 \end{pmatrix} a^{n-3}b^3+...+\begin{pmatrix} n \\ n \end{pmatrix} b^n$

以上2つの式はまったく同じ意味ですが,$_nC_k$は組合せの数,$\begin{pmatrix} n \\ k \end{pmatrix}$は二項係数と呼ばれています.もちろん実際の計算もまったく同じで,具体的には次の式になります.
$(a+b)^n = \displaystyle{a}^{n}+{n}{a}^{{{n}-{1}}}{b} +\displaystyle\frac{{{n}{\left({n}-{1}\right)}}}{{{2}!}}{a}^{{{n}-{2}}}{b}^{2} \displaystyle+\frac{{{n}{\left({n}-{1}\right)}{\left({n-2}\right)}}}{{{3}!}}{a}^{{{n}-{3}}}{b}^{3}  \displaystyle+\ldots+{b}^{n}$

ここで$a$と$b$をそれぞれ$1$と$x$に置き換えると次式になります.
$(1+x)^n = 1+nx+\displaystyle\frac{n\left(n-1\right)}{2!}x^2+\frac{{{n}{\left({n}-{1}\right)}{\left({n-2}\right)}}}{{{3}!}}x^3+\ldots+x^n$
…①

例えば次の式が成り立ちます.
$(1+x)^2= 1+2x+x^2$
$(1+x)^3= 1+3x+3x^2+x^3$
$(1+x)^4= 1+4x+6x^2+4x^3+x^4$
$(1+x)^5= 1+5x+10x^2+10x^3+5x^4+x^5$

ところで,ここまでは$n$が0以上の整数の場合だけでしたが,$n=-1$ や $n=\displaystyle\frac{1}{2}$だったらどうなるでしょう.実はこれもまったく同じ計算ができます.しかし,この上の3つの例のように有限にならず,無限に続きます.式①に代入してみましょう.
$(1+x)^{-1}= 1-x+x^2-x^3+\ldots$
$(1+x)^{\frac{1}{2}}= 1+\displaystyle\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{16}x^3+\ldots$

因みにこの式は,$f(x)=(1+x)^r$のマクローリン級数($x=0$でのテイラー級数)と一致しています.実は$n$が0以上の整数の場合も含めて,有理数,実数の場合まで拡張した二項定理を,すでにあのニュートンが発見していました.ニュ-トンの一般二項定理と呼ばれています.

<参考>
Binomial Theorem
http://mathworld.wolfram.com/BinomialTheorem.html
The Binomial Series
https://revisionmaths.com/advanced-level-maths-revision/pure-maths/algebra/binomial-series

Saturday, 18 August 2018

小説 夜中に犬に起こった奇妙な事件

マーク・ハッドン著 2003年

素数 モンティ・ホール問題 ロジスティック写像

近所の犬が殺された事件の解明をしようとする,自閉的傾向のある少年クリストファーの視点で語られる小説です.物語の流れとは関係なく数学や理科の話が唐突に出てきます.

モンティ・ホール問題

1990年代に米国で大きな議論になった問題です.
あなたがテレビのゲーム番組に出るとする.このゲーム番組の目的は,賞品の車をあてることだ.ゲーム番組の司会者はあなたに3つの扉を見せる.この3つの扉のうちの1つのうしろに車があり、残りの2つの扉のうしろにはヤギがいるという.司会者はまず1つの扉を選ぶようにという.あなたは扉を1つ選ぶけれど,それは開けてもらえない.それから司会者はあなたが選ばなかった扉の1つを開けてヤギを見せる(なぜなら司会者はその扉のうしろになにがあるか知っている).それから司会者は、あなたが残りの扉を開けて車かヤギのどちらかを手に入れる前に1度だけ考えを変えてもいいという.そこで司会者はあなたに,考えを変えてもう1つの開けていない扉を選ぶかどうかたずねる.あなたはどうすべきか? 
3つの扉をそれぞれX, Y, Zと呼ぶこととする.CXを扉Yのうしろに車がある事象とし, CY, CZも同様とする.HXを司会者が扉Xを開ける事象とし,HY, HZも同様とする.あなたが扉Xを選んだと仮定すると,考えを変えてちがう扉を選んだときに車が当たる確率は以下の式によって求められる.
P(HZ∩CY)+P(HY∩CZ)
=P(CY)P(HZ|CY)+P(CZ)P(HY|CZ)
=(1/3×1)+(1/3×1)
=2/3
従って,考えを変えてちがう扉を選んだ方が車の当たる確率が高いということになります.これはもともとモンティ・ホールという人が司会をしていたTV番組の中のゲームですが,今は高校の数学の教科書の「条件付き確率」のところで紹介されています.当時は当たる確率が直観的な1/2なのか,正しい2/3なのかで大きな議論になりました.上の文字式の意味は次のようになります.

(あなたが最初に扉Xを選んだあと)「扉Yのうしろに車があって司会者が扉Zを開ける確率」+「扉Zのうしろに車があって司会者が扉Yを開ける確率」

ロジスティック写像

この名前を出さずにいきなり以下の式が「謎ではない謎の例」として登場します.
ここに生き物の数の公式がある.
Nnew=λNold(1-Nold)
Nnewはある年の個体密度を表し,Noldは前年のそれを表す.λはある定数である.
λが1より小さいならば,個体数はだんだん減って絶滅に至る.λが1と3のあいだであれば,個体数は増え,定常状態になる.そしてλが3と3.57のあいだの場合は,個体数は周期的に変動するようになる.しかし,λが3.57より大きいときはカオスになる.
生物の個体数の推移を表すロジスティック方程式という微分方程式$$\frac{dN}{dt}=\frac{r}{K} (K-N)N$$があり,これを普通に解くとロジスティック関数が得られますが,小説に登場した式を得るには,この左辺の微分係数を差分商$\varDelta N/\varDelta t$に置き換えて次のように変形します.$$\frac{N_{n+1}-N_n}{\varDelta t}=\frac{r}{K} (K-N_n)N_n$$$$N_{n+1}=N_n+r\varDelta t N_n-\frac{r\varDelta t}{K} N_n^2$$$$N_{n+1}=\{ (1+r\varDelta t)-\frac{r\varDelta t}{K} N_n \} N_n$$この両辺に$\frac{r\varDelta t}{K(1+r\varDelta t)}$を掛けて,$$\frac{r\varDelta t}{K(1+r\varDelta t)}N_{n+1}=\{ (1+r\varDelta t)-\frac{r\varDelta t}{K} N_n \} \frac{r\varDelta t}{K(1+r\varDelta t)}N_n$$$$\frac{r\varDelta t}{K(1+r\varDelta t)}N_{n+1}=(1+r\varDelta t)\{ 1-\frac{r\varDelta t}{K(1+r\varDelta t)} N_n \} \frac{r\varDelta t}{K(1+r\varDelta t)}N_n$$ここで$\frac{r\varDelta t}{K(1+r\varDelta t)}N_n=x_n$,$1+r\varDelta t=a$とおけば,$$x_{n+1}=a(1-x_n)x_n$$この漸化式はロジスティック写像と呼ばれています.$x_n$はある時刻の個体数の割合,$x_{n+1}$はその次の時刻の個体数の割合です.生物によって$a$の値が異なり,様々な個体数推移パターン(絶滅,定常状態,周期的変動,カオス)があります.

ロジスティック写像は$x_n$の2次関数になっていて,頂点は$(\frac{1}{2}, \ \frac{a}{4})$となるので,[0,1]から[0,1]への写像にするため,0≦$\frac{a}{4}$≦1,すなわち0≦$a$≦4になります.上のλ=($a$=)3.57という値はある数列の極限値ですが,これより大きい値の生物の個体数の推移はカオスになるという境界(ファイゲンバウム点)になっています.

[Reference]

カオスとフラクタル
山口昌哉著 1986年 ブルーバックス

ロジスティック写像
https://sites.google.com/site/cinderellajapan/cinderellade-kaosu/rojisutikkushazou

Sunday, 5 August 2018

小説 クラインの壺

岡嶋二人著 2005年 講談社文庫

クラインの壺 メビウスの輪 トポロジー 位相幾何学

究極のバーチャルリアリティの世界で,現実と仮想の見分けがつかなくなり,不思議なことが次々と起こるというSF小説です.この世界がまるで内側と外側の区別がつかない図形であるクラインの壺のようなので,このタイトルがつけられています.位相幾何学(トポロジー)に登場する図形,メビウスの輪とクラインの壺について,かなり詳しい説明がありました.
真壁七美「メビウスの輪って知ってるでしょう?」
上杉彰彦「……途中がいっぺんねじってある輪っかのことだろ?」
真壁七美「うん。クラインの壺は、メビウスの輪を四次元にしたものなのよ」
(中略)
真壁七美「メビウスの輪には、表も裏もないわけ。表だと思っているところは裏でもあるわけだし、裏だと思ってるところは、実は表なのよね。クラインの壺は、それを立体にしたものなの。」
以上の部分を含めて5ページに渡り,メビウスの輪とクラインの壺について,少し重複はあるものの,かなり詳しく説明されていました.短くまとめると以下のような感じでしょうか.
メビウスの輪は,細長い紙をねじり合わせるとできる.その上を歩いている人は,表を歩いているつもりなのにいつの間にか裏を歩いている.クラインの壺は,細長い紙ではなくパイプ(細長い管)を想像する.その端と端をくっつけるとドーナツができるが,クラインの壺はそのパイプを一度四次元の方向にひっくり返してくっつけるから,内側で歩いている人がいつの間にか外側で歩いていることになる.
メビウスの輪とクラインの壺
上のような図はありませんでしたが,とても分かり易く解説してあったので感心しました.ここまで詳しく数学用語を解説している小説にはこれまで出会った記憶がありません.上のクラインの壺の図は管が交差しているように見えますが,「四次元の方向にひっくり返して」あるので,実際は交差していません(あまり難しく考えないでください).

位相幾何学(トポロジー)は,伸び縮みする図形を考える幾何学です.円と三角形や四角形のなどの多角形は同じとみなすとか,ドーナツとコーヒーカップは1つ穴の開いた立体として同じとみなすというような例がよく紹介されています.ところが,面白そうと思って位相幾何学の入門書を読み始めると,前置きが長いうえ,「何これ?」と思うぐらい難しくなるので読み進むのが大変です.

いつもは登場した数式や数学用語の解説をしていますが,ここでは逆に小説で解説された話を数学的に表現してみます.

[メビウスの輪]
単位閉区間$I=[0,1]$の直積である正方形$I×I=[0,1]×[0,1] $の1組の対辺を逆向きで同一視する同値関係~でできた商空間$I×I/\sim$.

[クラインの壷]
単位円(1次元単位球面)$S^1=\{(x, y) \ | \ x^2+y^2=1\}$と単位閉区間$I$の直積である円柱$S^1×I$の両端の円を同じ向きで同一視する同値関係~でできた商空間$S^1×I/\sim$.

メビウスの輪は,直感的には正方形の対辺を逆向きに張りあわせたものになります.同じ向きに張りあわせたものは,平面上なら2つの同心円によって囲まれた部分,すなわちアニュラス(円環)となり,空間内なら円柱側面になります.クラインの壷は、直感的には円柱の端の円を同じ向きに張りあわせたものになります.逆向きに張りあわせたものはトーラス(ドーナツ型)になります.

---------
[付録]
いくつかのトポロジー用語の解説を試みてみました.

同相
集合AとBを同じとみなす(=同相)とは,AとBの間で同相写像が存在する,すなわち「1対1かつ上への両連続な写像が存在する」ことをいうのですが,直感的には伸び縮みさせて同じ形になれば同相です.

単位球面
n次元単位球面$S^n$(n+1次元単位球の表面)とは,例えば,0次元単位球面$S^0$は$R$(1次元実数直線)上の2点{1,-1}(原点からの距離が1である2点),1次元単位球面$S^1$は$R^2$(2次元平面)上の$x^2+y^2=1$(原点からの距離が1の円周),2次元単位球面$S^2$は$R^3$(3次元空間)内の$x^2+y^2+z^2=1$(原点からの距離が1の球面)を意味します.

商空間
集合を同じ条件を満たすもので分類して得られる集合を商集合(距離とか位相とか定義されていれば商空間)といいます.例えば整数全体Zを2で割り切れるかどうかで分類すると奇数と偶数に分類されます.この商集合(商空間)はZ/2Zと表されます.これを仮に$\{ \overline{ 0 }, \overline{ 1 } \}$と表せば,偶数を$\overline{ 0 }$,奇数を$\overline{ 1 }$と同一視したことになります.このことを点の集合である図形でも同様に考えることができます.

商空間と単位球面
単位正方形$I×I= [0,1] × [0,1]$の境界上の点を全て同じとみなす同値関係~でできた商空間$I×I/\sim$は,正方形の境界が浮き上がり,開いていた口が閉じるような感じになるので,2次元単位球面$S^2$(3次元空間内の球面)と同相になります.

商空間$R/Z$と単位球面
実数/整数という商空間$R/Z$は,2つの実数の差が整数になるとき,2数を同一視します.すなわち,1.2も2.2も-0.8も-1.8もすべて[0.2+z](z∈Z)の元として同じとみなします.$R/Z$の元は$[x]=\{ x+z \ | \ 0≦x<1, \ z∈Z \}$と表せるので, $[x]$は区間 [0,1)上の1点と同一視できます.0と1は差が整数だからこれらも同一視できるので,R/Zは1次元単位球面$S^1$(2次元平面上の円周)と同相になります.

[参考]
トポロジー
田村一郎著 岩波全書

Tuesday, 8 May 2018

映画 ラプラスの魔女

東野圭吾原作 2018年5月公開 東宝

ラプラス方程式 ステファン・ボルツマンの法則

硫化水素中毒による死亡事件が続けて発生.気体の動きを正確に予測できない限り殺人は不可能.調査をした地球化学者の青江修介が事件の解明に行き詰まっていたとき,謎の女羽原円華が現われ、その後に起きる自然現象を正確に言い当てる.「ラプラスの悪魔」(小説「ラプラスの魔女に既出)のような知性を持つ女なので,このタイトルがつけられたものと思われます.
青江修介「君は?」
羽原円華「魔女……,ラプラスの魔女」
青江修介「ラプラス? 数学者の? ラプラス方程式を発見したあのラプラス?」
「ラプラスの悪魔」は量子力学によって,その存在の可能性は否定されています.

Laplace equation

ラプラス方程式は,多変数関数$f(x_1,x_2,\cdot\cdot\cdot,x_n)$の満たす次の2階線型偏微分方程式(小説「ラプラスの魔女に既出)になります.$$\Delta f =0$$この$\Delta$は微分演算子のひとつで"Laplacian"といい,$\Delta=\frac{∂^2}{∂{x_1}^2}+\frac{∂^2}{∂{x_2}^2}+\cdot\cdot\cdot+\frac{∂^2}{∂{x_n}^2}$を意味します.話を簡単にするため,2変数の関数$f(x,y)$でラプラス方程式を表すと,次式になります.$$\frac{∂^2f}{∂x^2}+\frac{∂^2f}{∂y^2}=0$$このラプラス方程式を満たす関数を調和関数といいます.例えば$f(x,y)=\frac{x}{x^2+y^2}$は上式を満たすので調和関数になります.確かめてみましょう.
\begin{align}
\frac{∂^2z}{∂x^2}+\frac{∂^2z}{∂y^2}&=\frac{∂}{∂x}\frac{-x^2+y^2}{(x^2+y^2)^2}+\frac{∂}{∂y}\frac{-2xy}{(x^2+y^2)^2}\\
&=\frac{-2x(x^2+y^2)^2-(-x^2+y^2)\cdot2(x^2+y^2)\cdot2x}{(x^2+y^2)^4}\\
&+\frac{-2x(x^2+y^2)^2+2xy\cdot2(x^2+y^2)\cdot2y}{(x^2+y^2)^4}\\
&=0\\
\end{align}Stefan-Boltzmann law

青江修介が大学で講義しているシーンの板書に,物体が放射するエネルギーEはその表面温度T(熱力学温度:単位はK)の4乗に比例する,すなわち$E=\sigma T^4$が成り立つという「ステファン・ボルツマンの法則」を使って地球の表面温度を求める数式が書かれていました.

(例1) 温室効果なし ε=1(の場合)
\begin{align}
T^4&=\frac{1.37 (kW/m^2) \cdot 0.7}{4\times 1\times 5.67\times10^{-8} (W/m^2/K^4)}\\
&=4.23\times 10^9 (K^4)\\
\\T&=255(K)=-18(°C)\\
\end{align}
$T^4$の分子の$1.37(kW/m^2)=1.37\times 10^3(W/m^2)$は太陽定数(単位WはJ/sとも表します),0.7は1-0.3=1-反射率=吸収率,分母の4は地球の表面積$4\pi r^2$と太陽から光を受ける面積$\pi r^2$との比,1は放射率(または射出率)ε=1,$5.67\times10^{-8}$がステファン=ボルツマン定数$\sigma$です.$T^4=4.23\times 10^9$になるので,$T=\sqrt[4]{4.23\times 10^9}≒255(K)$となり,摂氏では-18(°C)になります.

(例2) 温室効果あり ε=0.6(の場合)$$T=289.7(°C)=16.7(°C)$$となっていましたが,正しくは289.7(K)ですね.(例1)の式でε=1をε=0.6に置き換えればこの値を得ます.

[Reference]
偏微分 調和関数
http://tau .doshisha.ac.jp/lectures/2009.calculus-II/html.dir/node41.html
地表が吸収する太陽エネルギー
http://www.s-yamaga.jp/nanimono/taikitoumi/taikitotaiyoenergy.htm

Friday, 30 March 2018

テレビ番組 ちちんぷいぷい 桜開花予想 

2018/03/28放送 MBS

指数関数・対数関数

テレビ番組「ちちんぷいぷい」で桜の開花日を予想する数式が登場しました.

数式を考察する前に,次の基本事項を押さえておきましょう.
①桜は夏に花芽(かが)ができ,休眠を始める.
②秋冬の気温の影響を受けながら休眠した後,冬のある日に休眠から覚める(「休眠打破」という).
③花芽は休眠打破の後,寒ければ小さく,暖かければ大きく生育し、ある生育量に達すると開花する.

番組では「AI技術 VS 気象予報士」という設定で,どちらがより正確に開花日を予想するかを勝負するというものでしたが,よく調べてみたら,どちらも大阪府立大学の教授らによって考えられた数式が元になっていて,それに他の要素を加味して補正することで予想に違いが出ることが分かりました.

番組で登場した数式  (1)
番組で登場した式(1)は気象庁でも使われていた式で,式(2)は大阪府立大学の教授らの論文(2017年)の中の式です.y=exp(x)は$y=e^x$と同じ意味で,ネイピア数eを底とする指数関数です.数字/文字の違いはありますが,(1)と(2)は基本的には同じ式です.

式中に登場する温度(単位:K)は絶対温度=摂氏温度+273.2という値になります.従って,絶対温度の288.2Kは摂氏でいうと15°Cになります.以下はその教授らの論文からの抜粋です.
温度変換日数(DTS = the number of days transformed to standard temperature)とは,ある一定の温度条件で1日間置かれたときの植物の生育過程が,あらかじめ決められた標準温度$T_s$(K)の下での条件に変換すると何日分の生育過程に相当するかを表す指数である。日平均気温が$T_{ij}$(K)であるi 年のDOY=day of year(または通日)j における温度変換日数$(t_s)_{ij}$(日)は,以下の式のように表すことができる。$$(t_s)_{ij}=\exp \left\{ \frac{E_a(T_{ij}-T_s)}{R\ T_{ij}\ T_s} \right\} \tag{2}$$ここで$E_a$は生育の温度に対する応答の特性を代表する温度特性値(J mol-1),$R$ は普遍気体定数(8.314 J mol-1 K-1)である。本研究では,青野・守屋(2003)にならい,標準温度$T_s$を15℃(288.2 K),$E_a$を70 kJ mol-1 として,ソメイヨシノの開花日の推定モデルに一貫して使用した。 
開花日の推定の際には,地点ごとに定められた適切な起算日$D_2$から式(2)の$(ts)_{ij}$を積算し始め,その値があらかじめ定められた特定の値23.8($DTS_2$)に達した日を推定開花日とする。起算日$D_2$は3つの地理的・環境的変数を使って,比較的簡単に地点ごとに計算できる。起算日$D_2$は次の式(3)で推定される。
$D_2=136.765-7.689Ψ+0.133Ψ^2\\ \hspace{ 40pt } -1.307\ln L+0.144T_F+0.285{T_F}^2 \tag{3}$
ここでΨは緯度(°N),Lは海岸からの距離(km),TFは1, 2, 3 月の平均気温の平年値(℃)である。なお,海岸沿いの地点の場合,Lには1kmを適用する。
なぜ海岸沿いなのに1kmを適用するのかというと,式(3)のlnLは自然対数logeLを表しますから,Lが1未満だとlnLの値は急激に$-∞$に向かい,現実的でないからだと思われます.さて,式(1)を簡単にすると,$$\exp \left \{ \frac{9500(t-288.2)}{288.2t} \right \}$$
式(2)に定数を代入し,$T_{ij}$をtで表すと, $$\exp \left \{ \frac{8420(t-288.2)}{288.2t} \right \}$$となります.分子の係数が,式(1)は9.5×103=9500,式(2)は70000/8.314≒8420なので少し異なりますね.

この式で休眠打破(起算日)後の1日当たりの生育量を求め,積算して23.8になった日が開花日になります.極端な例でいうと,起算後の毎日の平均気温がずっと15℃だったら23.8日後に開花するということになります.この23.8という値は大量の過去のデータをもとに算出されたものだそうです.

この番組の最後に,勝負に負けた方からの面白いコメントがありました.「桜の気持ちもありますからね」

[Reference]
自発休眠期の気温を考慮したソメイヨシノの開花日の簡便な推定法
青野靖之・村上なつき(2017年)
さくら開花予想方法について
気象庁
桜の開花予想、国が認めた“魔法の公式”
https://withnews.jp/article/f0180319001qq000000000000000W08e10701qq000016960A