Sunday, 5 August 2018

小説 クラインの壺

2005年 岡嶋二人著 講談社文庫

クラインの壺 メビウスの輪 トポロジー 位相幾何学

究極のバーチャルリアリティの世界で,現実と仮想の見分けがつかなくなり,不思議なことが次々と起こるというSF小説です.この世界がまるで内側と外側の区別がつかない図形であるクラインの壺のようなので,このタイトルがつけられています.位相幾何学(トポロジー)に登場する図形,メビウスの輪とクラインの壺について,かなり詳しい説明がありました.
真壁七美「メビウスの輪って知ってるでしょう?」
上杉彰彦「……途中がいっぺんねじってある輪っかのことだろ?」
真壁七美「うん。クラインの壺は、メビウスの輪を四次元にしたものなのよ」
(中略)
真壁七美「メビウスの輪には、表も裏もないわけ。表だと思っているところは裏でもあるわけだし、裏だと思ってるところは、実は表なのよね。クラインの壺は、それを立体にしたものなの。」
以上の部分を含めて5ページに渡り,メビウスの輪とクラインの壺について,少し重複はあるものの,かなり詳しく説明されていました.短くまとめると以下のような感じでしょうか.
メビウスの輪は,細長い紙をねじり合わせるとできる.その上を歩いている人は,表を歩いているつもりなのにいつの間にか裏を歩いている.クラインの壺は,細長い紙ではなくパイプ(細長い管)を想像する.その端と端をくっつけるとドーナツができるが,クラインの壺はそのパイプを一度四次元の方向にひっくり返してくっつけるから,内側で歩いている人がいつの間にか外側で歩いていることになる.
メビウスの輪とクラインの壺
上のような図はありませんでしたが,とても分かり易く解説してあったので感心しました.ここまで詳しく数学用語を解説している小説にはこれまで出会った記憶がありません.上のクラインの壺の図は管が交差しているように見えますが,「四次元の方向にひっくり返して」あるので,実際は交差していません(あまり難しく考えないでください).

位相幾何学(トポロジー)は,伸び縮みする図形を考える幾何学です.円と三角形や四角形のなどの多角形は同じとみなすとか,ドーナツとコーヒーカップは1つ穴の開いた立体として同じとみなすというような例がよく紹介されています.ところが,面白そうと思って位相幾何学の入門書を読み始めると,前置きが長いうえ,「何これ?」と思うぐらい難しくなるので読み進むのが大変です.

いつもは登場した数式や数学用語の解説をしていますが,ここでは逆に小説で解説された話を数学的に表現してみます.

[メビウスの輪]
単位閉区間$I=[0,1]$の直積である正方形$I×I=[0,1]×[0,1] $の1組の対辺を逆向きで同一視する同値関係~でできた商空間$I×I/\sim$.

[クラインの壷]
単位円(1次元単位球面)$S^1=\{(x, y) \ | \ x^2+y^2=1\}$と単位閉区間$I$の直積である円柱$S^1×I$の両端の円を同じ向きで同一視する同値関係~でできた商空間$S^1×I/\sim$.

メビウスの輪は,直感的には正方形の対辺を逆向きに張りあわせたものになります.同じ向きに張りあわせたものは,平面上なら2つの同心円によって囲まれた部分,すなわちアニュラス(円環)となり,空間内なら円柱側面になります.クラインの壷は、直感的には円柱の端の円を同じ向きに張りあわせたものになります.逆向きに張りあわせたものはトーラス(ドーナツ型)になります.

---------
[付録]
いくつかのトポロジー用語の解説を試みてみました.

同相
集合AとBを同じとみなす(=同相)とは,AとBの間で同相写像が存在する,すなわち「1対1かつ上への両連続な写像が存在する」ことをいうのですが,直感的には伸び縮みさせて同じ形になれば同相です.

単位球面
n次元単位球面$S^n$(n+1次元単位球の表面)とは,例えば,0次元単位球面$S^0$は$R$(1次元実数直線)上の2点{1,-1}(原点からの距離が1である2点),1次元単位球面$S^1$は$R^2$(2次元平面)上の$x^2+y^2=1$(原点からの距離が1の円周),2次元単位球面$S^2$は$R^3$(3次元空間)内の$x^2+y^2+z^2=1$(原点からの距離が1の球面)を意味します.

商空間
集合を同じ条件を満たすもので分類して得られる集合を商集合(距離とか位相とか定義されていれば商空間)といいます.例えば整数全体Zを2で割り切れるかどうかで分類すると奇数と偶数に分類されます.この商集合(商空間)はZ/2Zと表されます.これを仮に$\{ \overline{ 0 }, \overline{ 1 } \}$と表せば,偶数を$\overline{ 0 }$,奇数を$\overline{ 1 }$と同一視したことになります.このことを点の集合である図形でも同様に考えることができます.

商空間と単位球面
単位正方形$I×I= [0,1] × [0,1]$の境界上の点を全て同じとみなす同値関係~でできた商空間$I×I/\sim$は,正方形の境界が浮き上がり,開いていた口が閉じるような感じになるので,2次元単位球面$S^2$(3次元空間内の球面)と同相になります.

商空間$R/Z$と単位球面
実数/整数という商空間$R/Z$は,2つの実数の差が整数になるとき,2数を同一視します.すなわち,1.2も2.2も-0.8も-1.8もすべて[0.2+z](z∈Z)の元として同じとみなします.$R/Z$の元は$[x]=\{ x+z \ | \ 0≦x<1, \ z∈Z \}$と表せるので, $[x]$は区間 [0,1)上の1点と同一視できます.0と1は差が整数だからこれらも同一視できるので,R/Zは1次元単位球面$S^1$(2次元平面上の円周)と同相になります.

[参考]
トポロジー
田村一郎著 岩波全書

No comments:

Post a Comment