問(2) 銅像を見込む角が最大となるときの,見る人の足元の位置を「ベストスポット」と呼ぶことにする.この「ベストスポット」について,太郎さんは次のように考えた.ということは,Rがどんなときに最小になるかをこれから考えていくんだなと思ったら,次はこんな問いでした.
[太郎さんの考え] 3点A,B,Pを通る円の半径をRとすると,ABの長さは常に一定であることから,∠APBが鋭角ならば,∠APBが最大となるのは,Rが最小のときである.
(i) ∠APBが鋭角であることを確かめる方法を,△APBの3辺の長さAB,AP,BPについての式を用いて説明せよ.ここでわざわざ「∠APBが鋭角である」ことを確かめる必要があるのでしょうか.銅像の足元を視点より低くして,よっぽど近寄らないと見込む角は鈍角にはなりません.銅像の足元Bは視点Pより高いので,∠APBが鋭角であることは明らかです.この状況を図に描いたら,100人中100人は∠APBが鋭角になるでしょう.
(ii) [太郎さんの考え] が正しいことは,sin∠APB,AB,R を用いたある関係式と,「∠APBが鋭角のとき,∠APBが大きくなるほどsin∠APB の値は大きくなる」ことからわかる.その関係式を答えよ.これだけ誘導されていたら正弦定理とすぐに分かりますね.sin∠APB=AB/(2R)なので,「Rが最小」⇔ 「sin∠APBが最大」⇔ 「∠APBが最大」といえます.
(iii) 二人は [太郎さんの考え] について先生に相談したところ,Rが最小になるのは,3点A,B,Pを含む平面上において,3点A,B,Pを通る円と点Pを通り直線ABに垂直な直線が接するときであることを教えてもらった.この考え方に基づいて,目の高さが1.5mの花子さんが,高さ6.5mの台座の上に乗せた高さ4mの銅像を見る場合の最小R,最大∠APB,ベストスポットの位置を求めよ.ようやくRが最小になるときを考えるのかなと思ったら,いきなり先生に相談です.自分たちで考える問題なのに「先生に教えてもらったこと」を前提にして話を次に進めています.この「先生に教えてもらったこと」を理解せずに次を考えるのは気持ち悪くないのでしょうか(この解説はこちらのサイトにあります).
この解説の別解で書かれているように, 「先生に教えてもらったこと」は,数学Ⅰまでの知識なら円周角を考えれば説明できます.他の方法で説明しようとすれば,正接の加法定理と相加平均・相乗平均の関係か方べきの定理,または微分を利用してもできますが,数学Ⅰの範囲を超えてしまいます.
日本の試験ではまだ使えませんが,グラフ電卓やそれに類似するソフト・アプリを使えば,数学Ⅰまでの知識でもこのことを確認することはできます.
まずA(0,9), B(0,5), P(x,0)とし,3点A,B,Pを通る円の中心をC(c,7)として,cをxの関数で表します.AC=BC=CPなので,
c^2+2^2=(x-c)^2+7^2
整理すると
c=(x^2+45)/(2x)
あとはこの関数を未習であっても,グラフ電卓等でグラフを描かせて最小値を表示させれば,ベストスポットの位置の近似解6.7が得られます.国際バカロレア,米国のAPやSAT,英国のA Levelなどでは,グラフ電卓を使える試験と使えない試験の併用が当たり前のように実施されています.
視点をいろいろ変えたらどうなるかをGeogebraで作ってみました.点Pを動かしてみてください.
No comments:
Post a Comment