YouTube 「積分するアイドル見つけました」 |
定積分の計算
アイドルグループ「乃木坂46」の林瑠奈が黒板に定積分の計算を書き,答が884になって,その語呂合わせが姓の「ハヤシ」になるという動画です.まず次の計算をします.$$\displaystyle\int_0^{\frac{-1+\sqrt{1769}}{2}}(4x+2)dx$$式変形は丸覚えという感じで,鼻歌を歌いながらすらすらと書いていきます.動画の通り,高校数学Ⅱの知識で884を導きました.この問題は数学の先生に教わったそうです.
この後にもう1問,今度は「100倍難しい」という三角関数を含む定積分の計算を書きます.その問題がこちらです.$$\displaystyle\int_{-1768}^{1768}\frac{\sin^2(46\pi x)}{1+e^x}dx\tag{1}$$
(2問目)三角関数を含む計算 |
$_2F_1(a , b ; c ; x)$は超幾何関数 |
このように,不定積分は超幾何関数や虚数単位 $i$ を含む難しい式になります.超幾何関数の定義は,$$_pF_q(a_1,…,a_p;b_1,…,b_q;x)=\sum_{n=0}^{∞}\frac{(a_1)_n(a_2)_n⋯(a_p)_n x^n}{(b_1)_n(b_2)_n⋯(b_q)_n n!}$$$$ここで,(a)_0=1, \quad (a)_n=a(a+1)(a+2)⋯(a+n-1)$$という式なので,xの係数が$\pi$のとき,上の式の中の超幾何関数は,次の式になります.$$_2F_1(1, -2\pi i; 1-2\pi i; -e^x)=\sum_{n=0}^{∞}\frac{(1)_n(-2\pi i)_n (-e^x)^n}{(1-2\pi i)_n n!}$$これをこのまま計算するのは困難なので,WolframAlphaに(1)の積分計算をしてもらったら,確かに884になりました.
積分するアイドル見つけました【乃木坂46×ヨビノリ】
https://www.youtube.com/watch?v=xsoroPOe9gk&t=915s
hypergeometric function
https://ncatlab.org/nlab/show/hypergeometric%20function